Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 435(11): 167997, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37330287

RESUMO

AAA+ ATPases are ubiquitous hexameric unfoldases acting in cellular protein quality control. In complex with proteases, they form protein degradation machinery (the proteasome) in both archaea and eukaryotes. Here, we use solution-state NMR spectroscopy to determine the symmetry properties of the archaeal PAN AAA+ unfoldase and gain insights into its functional mechanism. PAN consists of three folded domains: the coiled-coil (CC), OB and ATPase domains. We find that full-length PAN assembles into a hexamer with C2 symmetry, and that this symmetry extends over the CC, OB and ATPase domains. The NMR data, collected in the absence of substrate, are incompatible with the spiral staircase structure observed in electron-microscopy studies of archaeal PAN in the presence of substrate and in electron-microscopy studies of eukaryotic unfoldases both in the presence and in the absence of substrate. Based on the C2 symmetry revealed by NMR spectroscopy in solution, we propose that archaeal ATPases are flexible enzymes, which can adopt distinct conformations in different conditions. This study reaffirms the importance of studying dynamic systems in solution.


Assuntos
Endopeptidase Clp , Methanocaldococcus , Complexo de Endopeptidases do Proteassoma , Proteólise , Saccharomyces cerevisiae , Complexo de Endopeptidases do Proteassoma/química , Endopeptidase Clp/química , Domínios Proteicos , Ressonância Magnética Nuclear Biomolecular , Methanocaldococcus/enzimologia , Saccharomyces cerevisiae/enzimologia
2.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36142308

RESUMO

Genetically encoded caged amino acids can be used to control the dynamics of protein activities and cellular localization in response to external cues. In the present study, we revealed the structural basis for the recognition of O-(2-nitrobenzyl)-L-tyrosine (oNBTyr) by its specific variant of Methanocaldococcus jannaschii tyrosyl-tRNA synthetase (oNBTyrRS), and then demonstrated its potential availability for time-resolved X-ray crystallography. The substrate-bound crystal structure of oNBTyrRS at a 2.79 Å resolution indicated that the replacement of tyrosine and leucine at positions 32 and 65 by glycine (Tyr32Gly and Leu65Gly, respectively) and Asp158Ser created sufficient space for entry of the bulky substitute into the amino acid binding pocket, while Glu in place of Leu162 formed a hydrogen bond with the nitro moiety of oNBTyr. We also produced an oNBTyr-containing lysozyme through a cell-free protein synthesis system derived from the Escherichia coli B95. ΔA strain with the UAG codon reassigned to the nonnatural amino acid. Another crystallographic study of the caged protein showed that the site-specifically incorporated oNBTyr was degraded to tyrosine by light irradiation of the crystals. Thus, cell-free protein synthesis of caged proteins with oNBTyr could facilitate time-resolved structural analysis of proteins, including medically important membrane proteins.


Assuntos
Methanocaldococcus/enzimologia , Tirosina-tRNA Ligase , Códon de Terminação/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Muramidase/metabolismo , Tirosina/química , Tirosina/metabolismo , Tirosina-tRNA Ligase/química , Tirosina-tRNA Ligase/metabolismo
3.
Nature ; 609(7925): 197-203, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35882349

RESUMO

Archaea synthesize isoprenoid-based ether-linked membrane lipids, which enable them to withstand extreme environmental conditions, such as high temperatures, high salinity, and low or high pH values1-5. In some archaea, such as Methanocaldococcus jannaschii, these lipids are further modified by forming carbon-carbon bonds between the termini of two lipid tails within one glycerophospholipid to generate the macrocyclic archaeol or forming two carbon-carbon bonds between the termini of two lipid tails from two glycerophospholipids to generate the macrocycle glycerol dibiphytanyl glycerol tetraether (GDGT)1,2. GDGT contains two 40-carbon lipid chains (biphytanyl chains) that span both leaflets of the membrane, providing enhanced stability to extreme conditions. How these specialized lipids are formed has puzzled scientists for decades. The reaction necessitates the coupling of two completely inert sp3-hybridized carbon centres, which, to our knowledge, has not been observed in nature. Here we show that the gene product of mj0619 from M. jannaschii, which encodes a radical S-adenosylmethionine enzyme, is responsible for biphytanyl chain formation during synthesis of both the macrocyclic archaeol and GDGT membrane lipids6. Structures of the enzyme show the presence of four metallocofactors: three [Fe4S4] clusters and one mononuclear rubredoxin-like iron ion. In vitro mechanistic studies show that Csp3-Csp3 bond formation takes place on fully saturated archaeal lipid substrates and involves an intermediate bond between the substrate carbon and a sulfur of one of the [Fe4S4] clusters. Our results not only establish the biosynthetic route for tetraether formation but also improve the use of GDGT in GDGT-based paleoclimatology indices7-10.


Assuntos
Proteínas Arqueais , Éteres de Glicerila , Lipídeos de Membrana , Methanocaldococcus , Proteínas Arqueais/química , Proteínas Arqueais/isolamento & purificação , Proteínas Arqueais/metabolismo , Carbono/química , Carbono/metabolismo , Glicerol/química , Glicerol/metabolismo , Éteres de Glicerila/química , Éteres de Glicerila/metabolismo , Lipídeos de Membrana/biossíntese , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Methanocaldococcus/química , Methanocaldococcus/enzimologia , Methanocaldococcus/metabolismo , S-Adenosilmetionina/metabolismo , Terpenos/química , Terpenos/metabolismo
4.
Nucleic Acids Res ; 50(14): 8154-8167, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35848927

RESUMO

RNase P is a ribonucleoprotein (RNP) that catalyzes removal of the 5' leader from precursor tRNAs in all domains of life. A recent cryo-EM study of Methanocaldococcus jannaschii (Mja) RNase P produced a model at 4.6-Å resolution in a dimeric configuration, with each holoenzyme monomer containing one RNase P RNA (RPR) and one copy each of five RNase P proteins (RPPs; POP5, RPP30, RPP21, RPP29, L7Ae). Here, we used native mass spectrometry (MS), mass photometry (MP), and biochemical experiments that (i) validate the oligomeric state of the Mja RNase P holoenzyme in vitro, (ii) find a different stoichiometry for each holoenzyme monomer with up to two copies of L7Ae, and (iii) assess whether both L7Ae copies are necessary for optimal cleavage activity. By mutating all kink-turns in the RPR, we made the discovery that abolishing the canonical L7Ae-RPR interactions was not detrimental for RNase P assembly and function due to the redundancy provided by protein-protein interactions between L7Ae and other RPPs. Our results provide new insights into the architecture and evolution of RNase P, and highlight the utility of native MS and MP in integrated structural biology approaches that seek to augment the information obtained from low/medium-resolution cryo-EM models.


Assuntos
Proteínas Arqueais , Methanocaldococcus , Ribonuclease P , Proteínas Arqueais/metabolismo , Methanocaldococcus/enzimologia , Methanocaldococcus/genética , Conformação Proteica , RNA de Transferência/metabolismo , Ribonuclease P/metabolismo , Relação Estrutura-Atividade
5.
Microbiol Spectr ; 10(1): e0209321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107346

RESUMO

Methanocaldococcus sp. strain FS406-22, a hyperthermophilic methanogen, fixes nitrogen with a minimal set of known nif genes. Only four structural nif genes, nifH, nifD, nifK, and nifE, are present in a cluster, and a nifB homolog is present elsewhere in the genome. nifN, essential for the final synthesis of the iron-molybdenum cofactor of nitrogenase in well-characterized diazotrophs, is absent from FS406-22. In addition, FS406-22 encodes four novel hypothetical proteins, and a ferredoxin, in the nif cluster. Here, we develop a set of genetic tools for FS406-22 and test the functionality of genes in the nif cluster by making markerless in-frame deletion mutations. Deletion of the gene for one hypothetical protein, designated Hp4, delayed the initiation of diazotrophic growth and decreased the growth rate, an effect we confirmed by genetic complementation. NifE also appeared to play a role in diazotrophic growth, and the encoding of Hp4 and NifE in a single operon suggested they may work together in some way in the synthesis of the nitrogenase cofactor. No role could be discerned for any of the other hypothetical proteins, nor for the ferredoxin, despite the presence of these genes in a variety of related organisms. Possible pathways and evolutionary scenarios for the synthesis of the nitrogenase cofactor in an organism that lacks nifN are discussed. IMPORTANCEMethanocaldococcus has been considered a model genus, but genetic tools have not been forthcoming until recently. Here, we develop and illustrate the utility of positive selection with either of two selective agents (simvastatin and neomycin), negative selection, generation of markerless in-frame deletion mutations, and genetic complementation. These genetic tools should be useful for a variety of related species. We address the question of the minimal set of nif genes, which has implications for how nitrogen fixation evolved.


Assuntos
Proteínas de Bactérias/genética , Methanocaldococcus/genética , Fixação de Nitrogênio/genética , Nitrogenase/genética , Genes Bacterianos/genética , Methanocaldococcus/enzimologia , Methanocaldococcus/metabolismo , Nitrogenase/metabolismo , Óperon , Regiões Promotoras Genéticas , Deleção de Sequência
6.
Chembiochem ; 23(1): e202100437, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34606675

RESUMO

Methylation and demethylation of DNA, RNA and proteins constitutes a major regulatory mechanism in epigenetic processes. Investigations would benefit from the ability to install photo-cleavable groups at methyltransferase target sites that block interactions with reader proteins until removed by non-damaging light in the visible spectrum. Engineered methionine adenosyltransferases (MATs) have been exploited in cascade reactions with methyltransferases (MTases) to modify biomolecules with non-natural groups, including first evidence for accepting photo-cleavable groups. We show that an engineered MAT from Methanocaldococcus jannaschii (PC-MjMAT) is 308-fold more efficient at converting ortho-nitrobenzyl-(ONB)-homocysteine than the wildtype enzyme. PC-MjMAT is active over a broad range of temperatures and compatible with MTases from mesophilic organisms. We solved the crystal structures of wildtype and PC-MjMAT in complex with AdoONB and a red-shifted derivative thereof. These structures reveal that aromatic stacking interactions within the ligands are key to accommodating the photocaging groups in PC-MjMAT. The enlargement of the binding pocket eliminates steric clashes to enable AdoMet analogue binding. Importantly, PC-MjMAT exhibits remarkable activity on methionine analogues with red-shifted ONB-derivatives enabling photo-deprotection of modified DNA by visible light.


Assuntos
DNA/química , Luz , Metionina Adenosiltransferase/química , RNA/química , DNA/genética , DNA/metabolismo , Methanocaldococcus/enzimologia , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Estrutura Molecular , Processos Fotoquímicos , Engenharia de Proteínas , RNA/genética , RNA/metabolismo
7.
Nat Commun ; 12(1): 6982, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34848707

RESUMO

Phospholipids are the major components of the membrane in all type of cells and organelles. They also are critical for cell metabolism, signal transduction, the immune system and other critical cell functions. The biosynthesis of phospholipids is a complex multi-step process with high-energy intermediates. Several enzymes in different metabolic pathways are involved in the initial phospholipid synthesis and its subsequent conversion. While the "Kennedy pathway" is the main pathway in mammalian cells, in bacteria and lower eukaryotes the precursor CDP-DAG is used in the de novo pathway by CDP-DAG alcohol O-phosphatidyl transferases to synthetize the basic lipids. Here we present the high-resolution structures of phosphatidyl serine synthase from Methanocaldococcus jannaschii crystallized in four different states. Detailed structural and functional analysis of the different structures allowed us to identify the substrate binding site and show how CDP-DAG, serine and two essential metal ions are bound and oriented relative to each other. In close proximity to the substrate binding site, two anions were identified that appear to be highly important for the reaction. The structural findings were confirmed by functional activity assays and suggest a model for the catalytic mechanism of CDP-DAG alcohol O-phosphatidyl transferases, which synthetize the phospholipids essential for the cells.


Assuntos
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/química , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Methanocaldococcus/enzimologia , Sítios de Ligação , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Cristalografia por Raios X , Cistina Difosfato , Escherichia coli , Lipídeos de Membrana/química , Fosfatidilserinas , Fosfolipídeos , Fosfotransferases , Transferases
8.
Nat Chem Biol ; 17(5): 585-592, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33707784

RESUMO

YcaO enzymes catalyze several post-translational modifications on peptide substrates, including thioamidation, which substitutes an amide oxygen with sulfur. Most predicted thioamide-forming YcaO enzymes are encoded adjacent to TfuA, which when present, is required for thioamidation. While activation of the peptide amide backbone is well established for YcaO enzymes, the function of TfuA has remained enigmatic. Here we characterize the TfuA protein involved in methyl-coenzyme M reductase thioamidation and demonstrate that TfuA catalyzes the hydrolysis of thiocarboxylated ThiS (ThiS-COSH), a proteinaceous sulfur donor, and enhances the affinity of YcaO toward the thioamidation substrate. We also report a crystal structure of a TfuA, which displays a new protein fold. Our structural and mutational analyses of TfuA have uncovered conserved binding interfaces with YcaO and ThiS in addition to revealing a hydrolase-like active site featuring a Ser-Lys catalytic pair.


Assuntos
Proteínas Arqueais/química , Euryarchaeota/enzimologia , Methanobacteriaceae/enzimologia , Methanocaldococcus/enzimologia , Oxirredutases/química , Tioamidas/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Euryarchaeota/genética , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Histidina/química , Histidina/genética , Histidina/metabolismo , Cinética , Lectina de Ligação a Manose/química , Lectina de Ligação a Manose/genética , Lectina de Ligação a Manose/metabolismo , Methanobacteriaceae/genética , Methanocaldococcus/genética , Modelos Moleculares , Mutação , Oligopeptídeos/química , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato , Tioamidas/metabolismo
9.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33688044

RESUMO

Sequence-specific protein ligations are widely used to produce customized proteins "on demand." Such chimeric, immobilized, fluorophore-conjugated or segmentally labeled proteins are generated using a range of chemical, (split) intein, split domain, or enzymatic methods. Where short ligation motifs and good chemoselectivity are required, ligase enzymes are often chosen, although they have a number of disadvantages, for example poor catalytic efficiency, low substrate specificity, and side reactions. Here, we describe a sequence-specific protein ligase with more favorable characteristics. This ligase, Connectase, is a monomeric homolog of 20S proteasome subunits in methanogenic archaea. In pulldown experiments with Methanosarcina mazei cell extract, we identify a physiological substrate in methyltransferase A (MtrA), a key enzyme of archaeal methanogenesis. Using microscale thermophoresis and X-ray crystallography, we show that only a short sequence of about 20 residues derived from MtrA and containing a highly conserved KDPGA motif is required for this high-affinity interaction. Finally, in quantitative activity assays, we demonstrate that this recognition tag can be repurposed to allow the ligation of two unrelated proteins. Connectase catalyzes such ligations at substantially higher rates, with higher yields, but without detectable side reactions when compared with a reference enzyme. It thus presents an attractive tool for the development of new methods, for example in the preparation of selectively labeled proteins for NMR, the covalent and geometrically defined attachment of proteins on surfaces for cryo-electron microscopy, or the generation of multispecific antibodies.


Assuntos
Proteínas Arqueais/metabolismo , Ligases/metabolismo , Methanocaldococcus/enzimologia , Methanosarcina/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Cristalografia por Raios X , Complexo de Endopeptidases do Proteassoma/química , Conformação Proteica , Especificidade por Substrato
10.
Nucleic Acids Res ; 49(2): 1075-1093, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33398350

RESUMO

Defects in the posttranscriptional modifications of mitochondrial tRNAs have been linked to human diseases, but their pathophysiology remains elusive. In this report, we investigated the molecular mechanism underlying a deafness-associated tRNAIle 4295A>G mutation affecting a highly conserved adenosine at position 37, 3' adjacent to the tRNA's anticodon. Primer extension and methylation activity assays revealed that the m.4295A>G mutation introduced a tRNA methyltransferase 5 (TRMT5)-catalyzed m1G37 modification of tRNAIle. Molecular dynamics simulations suggested that the m.4295A>G mutation affected tRNAIle structure and function, supported by increased melting temperature, conformational changes and instability of mutated tRNA. An in vitro processing experiment revealed that the m.4295A>G mutation reduced the 5' end processing efficiency of tRNAIle precursors, catalyzed by RNase P. We demonstrated that cybrid cell lines carrying the m.4295A>G mutation exhibited significant alterations in aminoacylation and steady-state levels of tRNAIle. The aberrant tRNA metabolism resulted in the impairment of mitochondrial translation, respiratory deficiency, decreasing membrane potentials and ATP production, increasing production of reactive oxygen species and promoting autophagy. These demonstrated the pleiotropic effects of m.4295A>G mutation on tRNAIle and mitochondrial functions. Our findings highlighted the essential role of deficient posttranscriptional modifications in the structure and function of tRNA and their pathogenic consequence of deafness.


Assuntos
Perda Auditiva Neurossensorial/genética , Mutação Puntual , RNA de Transferência de Isoleucina/genética , Trifosfato de Adenosina/biossíntese , Adulto , Proteínas Arqueais/metabolismo , Autofagia , Sequência de Bases , Linhagem Celular , DNA Mitocondrial/genética , Etnicidade/genética , Feminino , Pleiotropia Genética , Perda Auditiva Neurossensorial/etnologia , Humanos , Isoleucina/metabolismo , Masculino , Herança Materna , Potencial da Membrana Mitocondrial , Methanocaldococcus/enzimologia , Metilação , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Fosforilação Oxidativa , Linhagem , Biossíntese de Proteínas , Processamento Pós-Transcricional do RNA , Proteínas Recombinantes/metabolismo , Aminoacilação de RNA de Transferência , Adulto Jovem , tRNA Metiltransferases/metabolismo
11.
Chembiochem ; 22(8): 1379-1384, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33350556

RESUMO

Site-specific incorporation of unnatural amino acids (uAAs) bearing a bioorthogonal group has enabled the attachment - typically at a single site or at a few sites per protein - of chemical groups at precise locations for protein and biomaterial labeling, conjugation, and functionalization. Herein, we report the evolution of chromosomal Methanocaldococcus jannaschii tyrosyl-tRNA synthetase (aaRS) for the alkyne-bearing uAA, 4-propargyloxy-l-phenylalanine (pPR), with ∼30-fold increased production of green fluorescent protein containing three instances of pPR compared with a previously described M. jannaschii-derived aaRS for pPR, when expressed from a single chromosomal copy. We show that when expressed from multicopy plasmids, the evolved aaRSs enable the production - using a genomically recoded Escherichia coli and the non-recoded BL21 E. coli strain - of elastin-like polypeptides (ELPs) containing multiple pPR residues in high yields. We further show that the multisite incorporation of pPR in ELPs facilitates the rapid, robust, and nontoxic fluorescent labeling of these proteins in bacteria. The evolved variants described in this work can be used to produce a variety of protein and biomaterial conjugates and to create efficient minimal tags for protein labeling.


Assuntos
Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Materiais Biocompatíveis/metabolismo , Methanocaldococcus/metabolismo , Aminoácidos/química , Aminoacil-tRNA Sintetases/química , Materiais Biocompatíveis/química , Methanocaldococcus/enzimologia , Estrutura Molecular , Fenilalanina/química , Fenilalanina/metabolismo
12.
Cell Rep ; 33(3): 108294, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33086053

RESUMO

The UbiA superfamily of intramembrane prenyltransferases catalyzes an isoprenyl transfer reaction in the biosynthesis of lipophilic compounds involved in cellular physiological processes. Digeranylgeranylglyceryl phosphate (DGGGP) synthase (DGGGPase) generates unique membrane core lipids for the formation of the ether bond between the glycerol moiety and the alkyl chains in archaea and has been confirmed to be a member of the UbiA superfamily. Here, the crystal structure is reported to exhibit nine transmembrane helices along with a large lateral opening covered by a cytosolic cap domain and a unique substrate-binding central cavity. Notably, the lipid-bound states of this enzyme demonstrate that the putative substrate-binding pocket is occupied by the lipidic molecules used for crystallization, indicating the binding mode of hydrophobic substrates. Collectively, these structural and functional studies provide not only an understanding of lipid biosynthesis by substrate-specific lipid-modifying enzymes but also insights into the mechanisms of lipid membrane remodeling and adaptation.


Assuntos
Proteínas Arqueais/metabolismo , Glicerofosfatos/biossíntese , Methanocaldococcus/enzimologia , Archaea/enzimologia , Proteínas Arqueais/biossíntese , Proteínas Arqueais/genética , Glicerofosfatos/metabolismo , Lipídeos de Membrana , Methanocaldococcus/metabolismo , Estrutura Secundária de Proteína
13.
J Mol Biol ; 432(24): 166692, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33122004

RESUMO

PLP-dependent enzymes catalyze a plethora of chemical reactions affecting diverse physiological functions. Here we report the structural determinants of the reaction mechanism in a Group II PLP-dependent decarboxylase by assigning two early intermediates. The in-crystallo complexes of the PLP bound form, and the Dunathan and quinonoid intermediates, allowed direct observation of the active site interactions. The structures reveal that a subtle rearrangement of a conserved Arg residue in concert with a water-mediated interaction with the carboxylate of the Dunathan intermediate, appears to directly stabilize the alignment and facilitate the release of CO2 to yield the quinonoid. Modeling indicates that the conformational change of a dynamic catalytic loop to a closed form controls a conserved network of hydrogen bond interactions between catalytic residues to protonate the quinonoid. Our results provide a structural framework to elucidate mechanistic roles of residues that govern reaction specificity and catalysis in PLP-dependent decarboxylation.


Assuntos
Catálise , Conformação Proteica , Fosfato de Piridoxal/análogos & derivados , Tirosina Descarboxilase/ultraestrutura , Aspartato Aminotransferases/química , Aspartato Aminotransferases/genética , Dióxido de Carbono/metabolismo , Domínio Catalítico/genética , Cristalografia por Raios X , Ligação de Hidrogênio , Methanocaldococcus/enzimologia , Fosfato de Piridoxal/química , Fosfato de Piridoxal/genética , Tirosina Descarboxilase/química , Tirosina Descarboxilase/genética , Água/química
14.
Nat Chem Biol ; 16(12): 1434-1439, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32929278

RESUMO

Compared with green fluorescent protein-based biosensors, red fluorescent protein (RFP)-based biosensors are inherently advantageous because of reduced phototoxicity, decreased autofluorescence and enhanced tissue penetration. However, existing RFP-based biosensors often suffer from small dynamic ranges, mislocalization and undesired photoconversion. In addition, the choice of available RFP-based biosensors is limited, and development of each biosensor requires substantial effort. Herein, we describe a general and convenient method, which introduces a genetically encoded noncanonical amino acid, 3-aminotyrosine, to the chromophores of green fluorescent protein-like proteins and biosensors for spontaneous and efficient green-to-red conversion. We demonstrated that this method could be used to quickly expand the repertoire of RFP-based biosensors. With little optimization, the 3-aminotyrosine-modified biosensors preserved the molecular brightness, dynamic range and responsiveness of their green fluorescent predecessors. We further applied spectrally resolved biosensors for multiplexed imaging of metabolic dynamics in pancreatic ß-cells.


Assuntos
Técnicas Biossensoriais , Proteínas de Fluorescência Verde/análise , Proteínas Luminescentes/análise , Imagem Óptica/métodos , Engenharia de Proteínas/métodos , Tirosina/análogos & derivados , Animais , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Linhagem Celular , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glucose/farmacologia , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Methanocaldococcus/química , Methanocaldococcus/enzimologia , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tirosina/genética , Tirosina/metabolismo , Tirosina-tRNA Ligase/genética , Tirosina-tRNA Ligase/metabolismo
15.
J Phys Chem B ; 124(6): 1001-1008, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31961162

RESUMO

In this work, we combine experiments and molecular simulations to unveil the hidden allosteric propensity of a thermophilic malate dehydrogenase protein (MDH). We provide evidence that, at its working temperature, the nonallosteric MDH takes a compact structure because of internal dewetting and reorganizes the active state toward functional conformations similar to its homologous allosteric LDHs. Moreover, a single-point mutation confers on the MDH a cooperative behavior that mimics an allosteric LDH. Our work not only demonstrates that thermophilic MDHs use temperature as an external parameter to regulate its functionality in a similar way allosteric LDHs use substrates/cofactors binding but also shows that the scaffold of MDHs possesses an intrinsic and hidden allosteric potentiality.


Assuntos
Malato Desidrogenase/metabolismo , Temperatura , Regulação Alostérica , Malato Desidrogenase/química , Malato Desidrogenase/genética , Methanocaldococcus/enzimologia , Simulação de Dinâmica Molecular
16.
J Struct Biol ; 208(2): 137-151, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31445086

RESUMO

Formation of the internal aldimine (LLP) is the first regulatory step that activates pyridoxal 5'-phosphate (PLP) dependent enzymes. The process involves a nucleophilic attack on PLP by an active site Lys residue, followed by proton transfers resulting in a carbinolamine (CBA) intermediate that undergoes dehydration to form the aldimine. Despite a general understanding of the pathway, the structural basis of the mechanistic roles of specific residues in each of these steps is unclear. Here we determined the crystal structure of the LLP form (holo-form) of a Group II PLP-dependent decarboxylase from Methanocaldococcus jannaschii (MjDC) at 1.7 Šresolution. By comparing the crystal structure of MjDC in the LLP form with that of the pyridoxal-P (non-covalently bound aldehyde) form, we demonstrate structural evidence for a water-mediated mechanism of LLP formation. A conserved extended hydrogen-bonding network around PLP coupled to the pyridinyl nitrogen influences activation and catalysis by affecting the electronic configuration of PLP. Furthermore, the two cofactor bound forms revealed open and closed conformations of the catalytic loop (CL) in the absence of a ligand, supporting a hypothesis for a regulatory link between LLP formation and CL dynamics. The evidence suggests that activation of Group II decarboxylases involves a complex interplay of interactions between the electronic states of PLP, the active site micro-environment and CL dynamics.


Assuntos
Archaea/enzimologia , Carboxiliases/química , Carboxiliases/metabolismo , Catálise , Ligação de Hidrogênio , Methanocaldococcus/enzimologia , Fosfato de Piridoxal/metabolismo
17.
Nat Chem ; 11(7): 669-675, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31110253

RESUMO

Nature carefully selects specific metal ions for incorporation into the enzymes that catalyse the chemical reactions necessary for life. Hydrogenases, enzymes that activate molecular H2, exclusively utilize Ni and Fe in [NiFe]-, [FeFe]- and [Fe]-hydrogeanses. However, other transition metals are known to activate or catalyse the production of hydrogen in synthetic systems. Here, we report the development of a biomimetic model complex of [Fe]-hydrogenase that incorporates a Mn, as opposed to a Fe, metal centre. This Mn complex is able to heterolytically cleave H2 as well as catalyse hydrogenation reactions. The incorporation of the model into an apoenzyme of [Fe]-hydrogenase results in a [Mn]-hydrogenase with an enhanced occupancy-normalized activity over an analogous semi-synthetic [Fe]-hydrogenase. These findings demonstrate a non-native metal hydrogenase that shows catalytic functionality and that hydrogenases based on a manganese active site are viable.


Assuntos
Materiais Biomiméticos/química , Complexos de Coordenação/química , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Manganês/química , Materiais Biomiméticos/síntese química , Catálise , Domínio Catalítico , Complexos de Coordenação/síntese química , Teoria da Densidade Funcional , Hidrogênio/química , Hidrogenase/genética , Hidrogenação , Proteínas Ferro-Enxofre/genética , Methanocaldococcus/enzimologia , Modelos Químicos , Mutação
18.
Arch Biochem Biophys ; 664: 1-8, 2019 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-30668939

RESUMO

The use of modular domains in proteins affords nature a simple route to the diversification of protein function, but co-evolution between domains can complicate large-scale functional annotation. The LeuA dimer regulatory domain is primarily responsible for allosteric feedback inhibition of the enzymes isopropylmalate synthase (IPMS) and citramalate synthase (CMS). In addition to this regulatory role, presence of the domain may also affect substrate selectivity in certain members of the enzyme family. To assess the role of the LeuA dimer regulatory domain in substrate selectivity, truncated versions of IPMS and CMS from Methanococcus jannaschii (MjIPMS and MjCMS, respectively) have been created that lack the LeuA dimer regulatory domain. In the case of MjIPMS, loss of the regulatory domain does not affect substrate selectivity, consistent with previous reports identifying conserved active site residues that play this role. Loss of the regulatory domain in MjCMS, however, results in increased functional promiscuity. Both truncated enzymes exhibit a shift in quaternary structure from tetrameric to monomeric forms as judged by size-exclusion chromatography. Kinetic isotope effects reveal that loss of the regulatory domain results in unique effects on catalysis with chemistry becoming more rate-determining in MjIPMS and less rate-determining in MjCMS. Finally, substitution of conserved active site residues in the promiscuous truncated MjCMS affect substrate selectivity while identical substitutions cause no changes in the wild-type enzyme. Overall, the data predicts a more complex role for the LeuA dimer regulatory domain in substrate selectivity through catalytic modulations rather than selectivity through differential binding as a result of extensive co-evolution between the catalytic and regulatory domains.


Assuntos
Domínio Catalítico , Liases/química , Liases/metabolismo , Regulação Alostérica , Liases/genética , Methanocaldococcus/enzimologia , Modelos Moleculares , Deleção de Sequência , Especificidade por Substrato
19.
Biochemistry ; 58(6): 665-678, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30525512

RESUMO

Nonribosomal peptide synthetases use tailoring domains to incorporate chemical diversity into the final natural product. A structurally unique set of tailoring domains are found to be stuffed within adenylation domains and have only recently begun to be characterized. PchF is the NRPS termination module in pyochelin biosynthesis and includes a stuffed methyltransferase domain responsible for S-adenosylmethionine (AdoMet)-dependent N-methylation. Recent studies of stuffed methyltransferase domains propose a model in which methylation occurs on amino acids after adenylation and thiolation rather than after condensation to the nascent peptide chain. Herein, we characterize the adenylation and stuffed methyltransferase didomain of PchF through the synthesis and use of substrate analogues, steady-state kinetics, and onium chalcogen effects. We provide evidence that methylation occurs through an SN2 reaction after thiolation, condensation, cyclization, and reduction of the module substrate cysteine and is the penultimate step in pyochelin biosynthesis.


Assuntos
Proteínas de Bactérias/química , Metiltransferases/química , Peptídeo Sintases/química , Fenóis/química , Tiazóis/química , Proteínas de Bactérias/isolamento & purificação , Catálise , Catecol O-Metiltransferase/química , Escherichia coli/genética , Cinética , Methanocaldococcus/enzimologia , Metionina Adenosiltransferase/química , Metionina Adenosiltransferase/isolamento & purificação , Metilação , Metiltransferases/isolamento & purificação , Peptídeo Sintases/isolamento & purificação , Fenóis/síntese química , Domínios Proteicos , Pseudomonas aeruginosa/enzimologia , S-Adenosilmetionina/análogos & derivados , Tiazóis/síntese química
20.
J Neurosci ; 38(33): 7248-7254, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30012684

RESUMO

Deregulation of cellular proteostasis due to the failure of the ubiquitin proteasome system to dispose of misfolded aggregation-prone proteins is a hallmark of various neurodegenerative diseases in humans. Microorganisms have evolved to survive massive protein misfolding and aggregation triggered by heat shock using their protein-unfolding ATPases (unfoldases) from the Hsp100 family. Because the Hsp100 chaperones are absent in homoeothermic mammals, we hypothesized that the vulnerability of mammalian neurons to misfolded proteins could be mitigated by expressing a xenogeneic unfoldase. To test this idea, we expressed proteasome-activating nucleotidase (PAN), a protein-unfolding ATPase from thermophilic Archaea, which is homologous to the 19S eukaryotic proteasome and similar to the Hsp100 family chaperones in rod photoreceptors of mice. We found that PAN had no obvious effect in healthy rods; however, it effectively counteracted protein-misfolding retinopathy in Gγ1 knock-out mice. We conclude that archaeal PAN can rescue a protein-misfolding neurodegenerative disease, likely by recognizing misfolded mammalian proteins.SIGNIFICANCE STATEMENT This study demonstrates successful therapeutic application of an archaeal molecular chaperone in an animal model of neurodegenerative disease. Introducing the archaeal protein-unfolding ATPase proteasome-activating nucleotidase (PAN) into the retinal photoreceptors of mice protected these neurons from the cytotoxic effect of misfolded proteins. We propose that xenogeneic protein-unfolding chaperones could be equally effective against other types of neurodegenerative diseases of protein-misfolding etiology.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas Arqueais/fisiologia , Terapia Genética , Methanocaldococcus/enzimologia , Dobramento de Proteína , Deficiências na Proteostase/terapia , Degeneração Retiniana/terapia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Adenosina Trifosfatases/genética , Animais , Proteínas Arqueais/genética , Modelos Animais de Doenças , Feminino , Subunidades gama da Proteína de Ligação ao GTP/deficiência , Subunidades gama da Proteína de Ligação ao GTP/genética , Genes Sintéticos , Células HEK293 , Humanos , Methanocaldococcus/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Regiões Promotoras Genéticas , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Degeneração Retiniana/enzimologia , Degeneração Retiniana/genética , Células Fotorreceptoras Retinianas Bastonetes/patologia , Rodopsina/genética , Transfecção , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...